Weak Topologies for the Closed Subsets of a Metrizable Space
نویسندگان
چکیده
The purpose of this article is to propose a unified theory for topologies on the closed subsets of a metrizable space. It can be shown that all of the standard hyperspace topologies—including the Hausdorff metric topology, the Vietoris topology, the Attouch-Wets topology, the Fell topology, the locally finite topology, and the topology of Mosco convergence—arise as weak topologies generated by families of geometric functionals defined on closed sets. A key ingredient is the simple yet beautiful interplay between topologies determined by families of gap functionals and those determined by families of Hausdorff excess functionals.
منابع مشابه
On Generalized Injective Spaces in Generalized Topologies
In this paper, we first present a new type of the concept of open sets by expressing some properties of arbitrary mappings on a power set. With the generalization of the closure spaces in categorical topology, we introduce the generalized topological spaces and the concept of generalized continuity and become familiar with weak and strong structures for generalized topological spaces. Then, int...
متن کاملTOPOLOGICAL CHARACTERIZATION FOR FUZZY REGULAR LANGUAGES
We present a topological characterization for fuzzy regular languages: we show that there is a bijective correspondence between fuzzy regular languages and the set of all clopen fuzzy subsets with finite image in the induced fuzzy topological space of Stone space (Profinite space), and then we give a representation of closed fuzzy subsets in the induced fuzzy topological space via fuzzy regular...
متن کامل. FA ] 2 9 M ar 1 99 3 TOPOLOGIES ON THE SET OF ALL SUBSPACES OF A BANACH SPACE AND RELATED QUESTIONS OF BANACH SPACE GEOMETRY
For a Banach space X we shall denote the set of all closed subspaces of X by G(X). In some kinds of problems it turned out to be useful to endow G(X) with a topology. The main purpose of the present paper is to survey results on two the most common topologies on G(X). The organization of this paper is as follows. In section 2 we introduce some definitions and notation. In sections 3 and 4 we in...
متن کاملSn-metrizable Spaces and Related Matters
sn-networks were first introduced by Lin [12], which are the concept between weak bases and cs-networks. sn-metrizable spaces [6] (i.e., spaces with σ-locally finite sn-networks) are one class of generalized metric spaces, and they play an important role in metrization theory, see [6, 13]. In this paper, we give a mapping theorem on sn-metrizable spaces, discuss relationships among spaces with ...
متن کاملM-FUZZIFYING TOPOLOGICAL CONVEX SPACES
The main purpose of this paper is to introduce the compatibility of $M$-fuzzifying topologies and $M$-fuzzifying convexities, define an $M$-fuzzifying topological convex space, and give a method to generate an $M$-fuzzifying topological convex space. Some characterizations of $M$-fuzzifying topological convex spaces are presented. Finally, the notion of $M$-fuzzifying weak topologies is obtaine...
متن کامل